Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
BMJ Open Ophthalmol ; 7(Suppl 2): A4, 2022 11.
Article in English | MEDLINE | ID: covidwho-20237484

ABSTRACT

INTRODUCTION: NHS Blood and Transplant Tissue and Eye Services (TES) is a human multi-tissue, tissue bank supplying tissue for transplant to surgeons throughout the UK. In addition, TES provides a service to scientists, clinicians and tissue bankers by providing a range of non-clinical tissue for research, training and education purposes. A large proportion of the non-clinical tissues supplied is ocular tissue ranging from whole eyes, to corneas, conjunctiva, lens and posterior segments remaining after the cornea is excised. The TES Research Tissue Bank (RTB) is based within the TES Tissue Bank in Speke, Liverpool and is staffed by two full-time staff. Non-clinical tissue is retrieved by Tissue and Organ Donation teams across United Kingdom. The RTB works very closely with two eye banks within TES, the David Lucas Eye Bank in Liverpool and the Filton Eye Bank in Bristol. Non-clinical ocular tissues are primarily consented by TES National Referral Centre Nurses. METHODS AND RESULTS: The RTB receives tissue via two pathways. The first pathway is tissue specifically consented and retrieved for non-clinical use and the second pathway is tissue that becomes available when tissue is found to be unsuitable for clinical use. The majority of the tissue that the RTB receives from the eye banks comes via the second pathway. In 2021, the RTB issued more than 1000 samples of non-clinical ocular tissue. The majority of the tissue, ~64% was issued for research purposes (including research into glaucoma, COVID-19, paediatrics and transplant research), ~31% was issued for clinical training purposes (DMEK and DSAEK preparation, especially after COVID-19 cessation of transplant operations, training for new eye bank staff) and ~5% was issued for in-house and validation purposes. One of the findings was that corneas are still suitable for training purposes up to 6-months after removal from the eye.In 2021, the RTB received 43 applications for ocular projects from new customers and supplied to 36 different projects, meeting 95% of all orders placed this year. DISCUSSION: The RTB works to a partial cost-recovery system and in 2021 became self-sufficient. The supply of non-clinical tissue is crucial for advancement in patient care and has contributed to several peer-reviewed publications.


Subject(s)
COVID-19 , Descemet Stripping Endothelial Keratoplasty , Humans , Child , Cornea , Eye Banks , Tissue Banks
2.
BMJ Open Ophthalmol ; 7(Suppl 2): A1-A2, 2022 11.
Article in English | MEDLINE | ID: covidwho-20236860

ABSTRACT

INTRODUCTION: Corneas for clinical use can be stored for a maximum of 28 days in organ culture medium after death. At the beginning of the COVID-19 pandemic in 2020 it became apparent that; a rare situation was arising in that clinical operations were being cancelled and that there would be a surplus of "clinical grade" corneas. Consequently, when the corneas reached the end of the storage period, if the tissue had appropriate consent, they were transferred to the Research Tissue Bank (RTB). However, University research had also stopped due to the pandemic and there was a situation where the RTB had good quality tissue without any users. Rather than discarding the tissue, a decision was made to store the tissue for future use by cryopreservation. MATERIALS AND METHODS: An established protocol for cryopreserving heart valves was adapted. Individual corneas were placed into wax histology cassettes then inside a Hemofreeze heart valve cryopreservation bag with 100 ml cryopreservation medium (10% Dimethyl sulphoxide)). They were frozen in a controlled rate freezer (Planer, UK) to below -150oC and stored in vapour phase over liquid nitrogen (VPLN) below -190oC. To assess morphology, six corneas were cut in half, one half was processed for histology whilst the other half was cryopreserved, stored for 1 week then thawed and processed for histology. The stains used were Haematoxylin and Eosin (H&E) and Miller's with Elastic Van Gieson (EVG). RESULTS: Comparative histological examination indicated that there were no visible, major, detrimental changes in morphology in the cryopreserved group as compared to the controls. Subsequently, a further, 144 corneas were cryopreserved. Samples were assessed for handling properties by eye bank technicians and ophthalmologists. The eye bank technicians felt that the corneas may be suitable for training purposes such a DSAEK or DMEK. The ophthalmologists said that they had no preference between the fresh or cryopreserved corneas, and both would be equally suitable for training purposes. CONCLUSION: Time expired, organ-cultured corneas, can be successfully cryopreserved using an established protocol by adapting the storage container and conditions. These corneas are suitable for training purposes and may prevent discard of corneas in future.


Subject(s)
COVID-19 , Pandemics , Humans , Cornea , Cryopreservation/methods , Freezing
3.
Stem Cell Reports ; 17(7): 1699-1713, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-1907809

ABSTRACT

Conjunctival epithelial cells, which express viral-entry receptors angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine type 2 (TMPRSS2), constitute the largest exposed epithelium of the ocular surface tissue and may represent a relevant viral-entry route. To address this question, we generated an organotypic air-liquid-interface model of conjunctival epithelium, composed of basal, suprabasal, and superficial epithelial cells, and fibroblasts, which could be maintained successfully up to day 75 of differentiation. Using single-cell RNA sequencing (RNA-seq), with complementary imaging and virological assays, we observed that while all conjunctival cell types were permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome expression, a productive infection did not ensue. The early innate immune response to SARS-CoV-2 infection in conjunctival cells was characterised by a robust autocrine and paracrine NF-κB activity, without activation of antiviral interferon signalling. Collectively, these data enrich our understanding of SARS-CoV-2 infection at the human ocular surface, with potential implications for the design of preventive strategies and conjunctival transplantation.


Subject(s)
COVID-19 , Epithelial Cells/metabolism , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Receptors, Virus/metabolism , SARS-CoV-2
4.
Ocul Surf ; 19: 190-200, 2021 01.
Article in English | MEDLINE | ID: covidwho-1065414

ABSTRACT

PURPOSE: The high infection rate of SARS-CoV-2 necessitates the need for multiple studies identifying the molecular mechanisms that facilitate the viral entry and propagation. Currently the potential extra-respiratory transmission routes of SARS-CoV-2 remain unclear. METHODS: Using single-cell RNA Seq and ATAC-Seq datasets and immunohistochemical analysis, we investigated SARS-CoV-2 tropism in the embryonic, fetal and adult human ocular surface. RESULTS: The co-expression of ACE2 receptor and entry protease TMPRSS2 was detected in the human adult conjunctival, limbal and corneal epithelium, but not in the embryonic and fetal ocular surface up to 21 post conception weeks. These expression patterns were corroborated by the single cell ATAC-Seq data, which revealed a permissive chromatin in ACE2 and TMPRSS2 loci in the adult conjunctival, limbal and corneal epithelium. Co-expression of ACE2 and TMPRSS2 was strongly detected in the superficial limbal, corneal and conjunctival epithelium, implicating these as target entry cells for SARS-CoV-2 in the ocular surface. Strikingly, we also identified the key pro-inflammatory signals TNF, NFKß and IFNG as upstream regulators of the transcriptional profile of ACE2+TMPRSS2+ cells in the superficial conjunctival epithelium, suggesting that SARS-CoV-2 may utilise inflammatory driven upregulation of ACE2 and TMPRSS2 expression to enhance infection in ocular surface. CONCLUSIONS: Together our data indicate that the human ocular surface epithelium provides an additional entry portal for SARS-CoV-2, which may exploit inflammatory driven upregulation of ACE2 and TMPRSS2 entry factors to enhance infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 , Conjunctiva/metabolism , Epithelium, Corneal/metabolism , Receptors, Virus/genetics , Serine Endopeptidases/genetics , Aged , Aged, 80 and over , Conjunctiva/virology , Epithelium, Corneal/virology , Humans , Middle Aged , SARS-CoV-2
5.
Br J Ophthalmol ; 106(3): 312-318, 2022 03.
Article in English | MEDLINE | ID: covidwho-947816

ABSTRACT

OBJECTIVES: To assess to which extent the COVID-19 pandemic affected corneal transplantation by virtue of donor selection algorithms in different European countries. DESIGN: Survey. SETTING: 110 eye banks in 26 European countries. PARTICIPANTS: 64 eye banks covering 95% of European corneal transplantation activity. INTERVENTIONS: A questionnaire listing the number of corneas procured and distributed from February to May 2018-2020 was circulated to eye banks. MAIN OUTCOME MEASURES: The primary outcome was the number of corneal procurements. Additional outcomes were national algorithms for donor selection, classified according to their stringency (donors with COVID-19 history, suspected for COVID-19, asymptomatic, PCR testing) and the pandemic severity in each country. We calculated Spearman's correlation coefficient to determine, two by two, the relationship between the 3-month decline in eye banking activity (procurement), the stringency of donor selection algorithm and the grading of pandemic severity (cases and deaths). A partial correlation was run to determine the relationship between decline and stringency while controlling for pandemic severity. RESULTS: Procurements decreased by 38%, 68% and 41%, respectively, in March, April and May 2020 compared with the mean of the previous 2 years, while grafts decreased, respectively, by 28%, 68% and 56% corresponding to 3866 untreated patients in 3 months. Significant disparities between countries and the decrease in activity correlated with stringency in donor selection independent of pandemic severity. CONCLUSIONS: Our data demonstrate significant differences between countries regarding donor screening algorithms based on precautionary principles and, consequently, a decrease in the donor pool, already constrained by a long list of contraindications. Fundamental studies are needed to determine the risk of SARS-CoV-2 transmission by corneal transplantation and guide evidence-based recommendations for donor selection to justify their substantial medical and economic impact.


Subject(s)
COVID-19 , Cornea , Donor Selection , Tissue Donors , COVID-19/epidemiology , Corneal Transplantation , Europe/epidemiology , Eye Banks , Humans , Pandemics , Tissue Donors/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL